Engineering Biomimetic Organs-on-a-chip Systems

Date and Time: 
Thursday, March 05, 2020 - 11:30am
Speaker: 
Yong Yang Ph.D.
Affiliation: 
Department of Biomedical Engineering, University of North Texas
Abstract: 
In the past decade, microphysiological systems or organs-on-a-chip systems (organ chips) have attracted increasing attention because they can provide human organ-like in vitro models. Human organs are complex networks and contain physical (matrix micro/nanostructures and stiffness), mechanical (fluidic forces and mechanical stimuli) and biochemical (such as growth factors and cytokines) cues. These cues critically influence numerous developmental, physiological and pathological processes in vivo, and have been applied to modulate almost all aspects of cell behavior in vitro. Yet these cues have not been fully implemented in the development of organ chips. By taking biomaterials and polymer micro-/nanoengineering approaches, we are able to engineer biomimetic organ chips that recapitulate the key anatomical and physiological characteristics of human organs. We have engineered a three-dimensional (3-D) tumor chip with controlled cell-cell and cell-matrix interactions for chemoresistance study of acute lymphoblastic leukemia. To develop a lung alveolar interstitium model, we have investigated the effects of interstitial nanostructures and stiffness on cellular responses to engineered nanomaterials. We have further developed microfluidic platforms which enable 2-D and 3-D mechanical stretches to mimic blood pressure-induced circumferential stretch and breathing movement, respectively. Therefore, we are able to integrate the interstitial nanostructures and stiffness cues with the 3-D breathing movement in a biomimetic lung alveolar interstitium chip for nanotoxicology study. With the enabling technique, we have been developing blood-brain barrier/blood-tumor barrier (BBB/BTB) chips and an optic nerve head chip. The engineered biomimetic organ chips are expected to advance our understanding and treatment of human disease.
Biography: 
Dr. Yong Yang is currently an Associate Professor in the Department of Biomedical Engineering at University of North Texas. Dr. Yang is the Director of the Micro and Nanoengineering Innovation in Medicine (MiNiMedicine) Laboratory, and his research focuses on elucidating cell-microenvironment interactions by creating biomimetic platforms with defined biophysical, biomechanical and biochemical cues, and therefore regulating cell fates for regenerative medicine and engineering microscale pathophysiologically relevant systems, or organ chips for understanding, diagnosis and treatment of human diseases. The lab is supported by research grants from NIH and NSF. Dr. Yang has authored over 30 publications in high-profile journals such as Advanced Materials, ACS Nano, JACS and Nano Letters, 80 scientific presentations, and 4 patents. Dr. Yang obtained his Ph.D. from the Department of Chemical and Biomolecular Engineering at The Ohio State University (OSU), and did postdoctoral research in The National Science Foundation (NSF) sponsored Nanoscale Science and Engineering Center (NSEC) for Affordable Nanoengineering of Polymer Biomedical Devices (CANPBD) at OSU and then the Department of Biomedical Engineering at Duke University. Prior to join UNT, he was a tenured faculty member in the Department of Chemical and Biomedical Engineering at West Virginia University.